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1.0. Introduction
This application note shows optimization techniques used to gain substantial performance improvement
on the Inverse Discrete Cosine Transformation (IDCT) and the dequantization in the Joint Photographic
Experts Group (JPEG) decompression, running on a Pentium II Processor with MMX(TM) Technology.
The code provided in the application note is based on the Independent JPEG Group (IJG) royalty free
software. The IDCT and the dequantization are done in one step. The process takes a block of 8x8
frequency components, performs the IDCT and the dequantization on the frequency components. The 'C'
code and the MMX(TM) Technology assembly implementation are presented. Performance results for
both implementations are summarized. The code provided in this application note is a direct replacement
of the IJG royalty free software. Minimum code modification is needed to take advantage of MMX(TM)
Technology. Section 5.0 contains all the code listing.

2.0. JPEG
The purpose of JPEG image compression is to reduce the file size required for a given continuous-tone
color image and is commonly used in data storage and transmission through the network. The
decompression process returns the data back to the approximated original image. JPEG uses the
properties of the human eye to achieve 10 to 80 times compression. The JPEG baseline model for image
compression consists of four stages: a forward discrete cosine transformation stage (FDCT), a lossy
quantization stage, and two lossless coding stages. The baseline model for decompression is the reversal
of the image compression: two lossless coding stages, a dequantization stage and the inverse discrete
cosine transformation (IDCT) stage. The initial transformation concentrates the information energy into
the first few DCT coefficients, the quantizer causes a controlled loss of information, and the two coding
stages further compress the data. The YCbCr color space separates luminance(Y) from chrominance(Cb,
Cr). The compression algorithm takes advantage of the fact that the human eye is more sensitive to
luminance than chrominance. The sensitivity of the eye also increases at low intensity levels. The
individual color components in the YCbCr color space are less correlated than in the RGB color space.
Therefore this model can be applied to compress each YCbCR component individually.

2.1. Quantization/Dequantization Algorithm

The Quantization step is used to reduce the magnitude of DCT coefficients and to increase the number of
zero value coefficients based on the eye's ability to detect different levels at a given frequency. The
values are chosen to match the sensitivity of the eye. Small quantization values are chosen for low
frequency and higher values for high frequency coefficients. The JPEG baseline model is considered a
"lossy" compressor because the reconstructed image is not identical to the original. Lossless coders,
which creates images identical to the original, achieve inferior compression sizes than JPEG.

In preparation of the transformation step, the image is broken up into 8X8 pixels for each color
component across the image. Video energy of the 8X8 block is scattered throughout the elements. If the
variation of this video energy is slow across the image, a transform is used to concentrate this energy into
a few coefficients, 2-dimensional DCT coefficients. Two separate Quantization/Dequantization tables are
used, one each for luminance and chrominance. The equation for the quantizer can be written as:

Quantified Coefficients = DCT Frequency Coefficient / Quantizer

The decompression step uses the inverse quantizer:

DCT Frequency Coefficient = Quantified Coefficients * Quantizer

Quantization is the lossy stage in the JPEG coding scheme. If quantization is too coarse, images look
"blocky", but if its too fine, more bits are in the final compressed data than is needed. Quantization can be



controlled by the Quality Factor, a number which changes the default quantization matrix by an effective
multiplicative factor. A lower quality image gives better compression and vice-versa.

2.2. Forward/Inverse Discrete Cosine Transformation (FDCT/IDCT)

Since human eyes are more sensitive to low spatial frequency, reducing the high spatial frequency
information in a given image results in a compressed file for the image with minimal loss in visual quality.
To accomplish this, FDCT is used to frequency representation. The data is transformed transform spatial
pixel data into into frequency coefficients of the 8x8 block of pixel components is transformed into 8x8
block of frequency coefficients that sinusoidal waveforms. In JPEG, an represents the amplitudes of
reference cosine waves. Notice the compressed file contains an approximation of the original image since
the high spatial frequency information has been removed. To reproduce the the compressed data. The
IDCT is the process of approximated original image, the IDCT is applied to transforming the the spatial
pixel data representation of the given image. This application note is focused on the frequency
representation of the image data back to IDCT process.

For computational simplicity, the 2-dimensional IDCT can be separated into a 1-D row IDCT and a 1-D
column IDCT. Several different 1-D algorithms have been developed to perform fast IDCTs. For fast
integer computation, IJG JPEG uses the AAN algorithm, and for a more precise integer implementation,
the LLM algorithm is used. The following is an explanation of each algorithm.

 

2.2.1 The LLM Algorithm

This implementation is based on an algorithm described in C. Loeffler, A. Ligtenberg and G. Moschytz,
"Practical Fast 1-D DCT Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, Speech, and
Signal Processing 1989 (ICASSP '89), pp. 988-991. The primary algorithm described there uses 11
multiplies and 29 adds. IJG JPEG uses their alternate method with 12 multiplies and 32 adds. The
advantage of this method is that no data path contains more than one multiplication; this allows a very
simple and accurate implementation in scaled fixed-point arithmetic, with a minimal number of shifts.

 

2.2.2 The AAN Algorithm

This implementation is based on Arai, Agui, and Nakajima's algorithm for scaled DCT. Their original
paper (Trans. IEICE E-71(11):1095) is in Japanese, but the algorithm is described in the Pennebaker &
Mitchell JPEG textbook. The following code is based directly on figure 4-8 in P&M. While an 8-point DCT
cannot be done in less than 11 multiplies, it is possible to arrange the computation so that many of the
multiplies are simple scalings of the final outputs. These multiplies can then be folded into the
multiplications or divisions by the JPEG quantization table entries. The AAN method leaves only 5
multiplies and 29 adds to be done in the DCT itself. The primary disadvantage of this method is that with
fixed-point math, accuracy is lost due to imprecise representation of the scaled quantization values. The
smaller the quantization table entry, the less precise the scaled value, so this implementation does worse
with high-quality-setting files than with low-quality ones.

 

2.2.3 The Reduced 4x4 IDCT Algorithm

The implementation is based on the LLM algorithm. It replaces each 8-to-8 1-D IDCT step with an 8-to-4
step that produces the four averages of two adjacent outputs. These steps were derived by computing the
corresponding values at the end of the normal LLM code, then simplifying as much as possible.



2.2.4 The Reduced 2x2 IDCT Algorithm

The implementation is based on the LLM algorithm. It replaces each 8-to-8 1-D IDCT step with an 8-to-2
step producing two averages of four outputs, for a 2x2 output. These steps were derived by computing
the corresponding values at the end of the normal LLM code, then simplifying as much as possible.

3.0 Optimization with Pentium II Processor
First step in optimizing is VTune profiling. This step identifies the functions on which to concentrate for the
purpose of optimization. Optimizing the highly utilized functions allows better overall performance gain.
This section presents many simple optimization techniques used for the the IDCT implementation with an
Intel Pentium II Processor with MMX(TM) Technology.

 

3.1. Maximize Parallelism

Single Instruction Multiple Data (SIMD) architecture of the MMX(TM) Technology is well suited for the
IDCT operation. The smaller the data type used, the more data can be processed in the same pass. IJG
JPEG uses "int" data type for the Dequantization table elements. In the Win32 environment, "int" is
defined as 32-bit data type. Using the MMX(TM) Technology registers, the most we can do with "int" data
type is two data in parallel for the same operation. The actual data requirement for Dequantization table
element is 9 bits. By converting the data type to "short", a 16-bit data type, for the Dequantization table,
we can increase the parallelism to four data for the same operation. This reduces the IDCT operation of
the 8x8 block from 8 passes to only 2 passes. The code in the "jmoreconfg.c":

#define MULTIPLIER int /* type for fastest integer multiply */

is changed to:

#define MULTIPLIER short /* type for fastest integer multiply */

The same holds true for the temporary work space used for the IDCT operation. Changing "int" to "short"
data type increases the parallelism to four data for the same operation.

3.2. Efficient Utilization of SIMD Architecture

Knowing the maximum and minimum range of your data size helps efficient utilization of the SIMD
architecture.

3.2.1 Take Advantage of "pmullw" Instruction

IJG has the input data defined as "short", a 16-bit data type. The dequantization table is also defined as
"short". the multiplication of two 16-bit data type values results in a 32-bit value. Below is a code snippet
taken from the the IJG code source.

#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); //z2 is defined as 32
bits Dword value.

The MMX(TM) Technology optimized IDCT module supports only the 8-bit sample size. The input data is
8-bit signed data and the dequantization table is 9-bit signed data. The maximum data size is a 16-bit
signed value for the multiplication of input data by the dequantization value. Utilizing the "pmullw"



instruction, four data can be processed at once. This is accomplished with the below instructions:

mov edi, quantptr
mov ebx, inptr
movq mm0, [ebx + 8*2] ; // mm0 = inptr[DCTSIZE*2]
pmullw mm0, [edi + 8*2] ; // mm0 = z2 (16-bit data type)

Above code snippet processes four 16-bit data in parallel. ebx and edi contain pointers to the input data
array and quantization table array respectively. Since the end result of the multiplication is a 16-bit value,
"pmullw" can be used to the advantage. The "pmullw" instruction performs two operations within three cpu
clock cycles. The "pmullw" instruction multiplies two sets of four signed words, producing four double-
word as the intermediate results. The low-order word of each intermediate result is then written to the final
MMX(TM) Technology register.

3.2.2 Take Advantage of "pmaddwd" Instruction

The "pmaddwd" instruction is another highly leveraged instruction for multiplication and addition in one
step. The operation;

#define FIX_1_175875602 ((INT32) 9633)
#define MULTIPLY(var,const) ((var) * (const))
z5 = MULTIPLY(z3 + z4, FIX_1_175875602);

can be accomplished with one SIMD instruction resulted in 4 multiplies and 2 additions:

static __int64 fix_117_117 = 0x25a125a125a125a1;
pmaddwd mm4, fix_117_117 ;

The "pmaddwd" instruction performs two operations within three cpu clock cycles. The "pmaddwd"
instruction multiplies two sets of four signed words, producing four double-words as the intermediate
results. The two low-order double-words of the intermediate results are added to form the final low-order
double-word result. The two hi-order double-words of the intermediate results are also added to form the
final hi-order double-word result. The final hi- and low-order double-words are then written to the
MMX(TM) Technology register.

3.3. Loop Unrolling

"Maximized Parallelism" has the effect of reducing the number of iterations from 8 to 2 passes. For the
remaining 2 passes, there exists 50% branch misprediction. For the Pentium II Processor, the penalty of
an incorrect prediction is greater than twelve clocks. This is equivalent to a 5% - 10% penalty for the IDCT
modules. This penalty is removed by unrolling the loop at the expense of increasing the size of the
executable.

3.4. Cache Data Alignment

Cache Data Alignment is critical to the performance of the Pentium II Processor. A misaligned temporary
work space array in the IDCT module can resulted in a 10% - 35% performance penalty for the module.
The penalty is eliminated by making sure that the temporary work space array is 8-byte aligned. The code
below aligns the wsptr array to 8-byte boundary:

short wsptr[DCTSIZE + 4]; //declare array 8 bytes larger than
is necessary

mov esi, wsptr



add esi, 0x07 ;move the pointer forward 7 bytes
and esi, 0xfffffff8 ;align wsptr to qword

4.0. Performance Results
The performance measurements was taken with a 266MHz Pentium II processor system with 32MB
memory. MMX(TM) Technology assembly code were compiled using Microsoft Visual C++ 5.0 with the
compiler options set to produce Pentium processor code and for maximize speed.

4.1 8x8 LLM IDCT and Dequantization

In figure 1, an 8x8 block of IDCT coefficients takes approximately 1500 cpu cycles to process. In figure 2,
the Pentium II processor with MMX(TM) Technology requires only 500 cpu cycles to process the same
IDCT coefficients. The net performance gain is 3X for the Pentium II processor over the standard 'C'
implementation.



4.2 8x8 AAN IDCT and Dequantization

In figure 3, an 8x8 block of IDCT coefficients takes approximately 1600 cpu cycles to process. In figure 4,
the Pentium II processor with MMX(TM) Technology requires only 330 cpu cycles to process the same
IDCT coefficients. The net performance gain is 5X for the Pentium II processor over the standard 'C'
implementation.



4.3 Reduced 4x4 LLM IDCT and Dequantization

In figure 5, an 8x8 block of IDCT coefficients takes approximately 800 cpu cycles to process. In figure 6,
the Pentium II processor with MMX(TM) Technology requires only 180 cpu cycles to process the same
IDCT coefficients. The net performance gain is 4X for the Pentium II processor over the standard 'C'
implementation.

4.4 Reduced 2x2 LLM IDCT and Dequantization

 



In figure 7, an 8x8 block of IDCT coefficients takes approximately 400 cpu cycles to process. In figure 8,
the Pentium II processor with MMX(TM) Technology requires only 77 cpu cycles to process the same
IDCT coefficients. The net performance gain is 4X for the Pentium II processor over the standard 'C'
implementation.

5.0. Code Listing
Free, portable C code for JPEG compression is available from the Independent JPEG Group. Source
code, documentation, and test files are included. If you wish to run cjpeg.exe, you need to download the
code from the following sites. Version 6a is available from ftp.uu.net:/graphics/jpeg/jpegsrc.v6a.tar.gz. Or
if you prefer the ZIP archive format, you can find it at
ftp.simtel.net:/pub/simtelnet/msdos/graphics/jpegsr6a.zip.

5.1 LLM IDCT Code Listing

• Pentium II Processor with MMX(TM) Technology Version

• Original IJG JPEG Version



5.2 AAN IDCT Code Listing

• Pentium II Processor with MMX(TM) Technology Version

• Original IJG JPEG Version

5.3 Reduced 4x4 IDCT Code Listing

• Pentium II Processor with MMX(TM) Technology Version

• Original IJG JPEG Version

5.4 Reduced 2x2 IDCT Code Listing

• Pentium II Processor with MMX(TM) Technology Version

• Original IJG JPEG Version


